
The Repeat Pattern Toolkit (RPT): Analyzing the Structure andEvolution of the C. elegans GenomePankaj Agarwal and David J. StatesInstitute for Biomedical ComputingWashington University700 S. Euclid AvenueSt. Louis, MO 63110fagarwal,statesg@ibc.wustl.eduAbstractOver 3:6 million bases of DNA sequence fromchromosome III of the C. eleganshave been deter-mined. The availability of this extended regionof contiguous sequence has allowed us to analyzethe nature and prevalence of repetitive sequencesin the genome of a eukaryotic organism with ahigh gene density.We have assembled a Repeat Pattern Toolkit(RPT) to analyze the patterns of repeats occur-ring in DNA. The tools include identifying sig-ni�cant local alignments (utilizing both two-wayand three-way alignments), dividing the set ofalignments into connected components (signify-ing repeat families), computing evolutionary dis-tance between repeat family members, construct-ing minimum spanning trees from the connectedcomponents, and visualizing the evolution of therepeat families.Over 7000 families of repetitive sequences wereidenti�ed. The size of the families ranged fromisolated pairs to over 1600 segments of similarsequence. Approximately 12:3% of the analyzedsequence participates in a repeat element.IntroductionThe genomes of humans and other higher organismscontain many sequences that are repeated one or moretimes. These repetitive elements range from mononu-cleotide tracts (for example, poly(A) repeats) to largecomplex segments (tens of kilobases), and from exactduplicates to highly-mutated copies (just detectable).The human genome is well known for the variety andnumber of repeated elements. In fact, the most preva-lent repeat in the human genome�Alu� is about 300base pairs long and represents about 5�10% of allthe DNA in the genome (Deininger & Schmid 1979;Britten et al. 1988; Jurka, Walichiewicz, & Milosavlje-vic 1992). Alu elements appear to be associated withtranscriptionally active genes.0Citation: Proceedings Second International Conferenceon Intelligent Systems for Molecular Biology (editors R.Altman, D. Brutlag, P. Karp, R. Lathrop, and D. Searls)AAAI press, 1994, pages 1�9.

Some repetitive sequence elements, such as the Line-1 family in humans, appear to be derived from retro-viruses. Some copies of both Alu and Line-1 are stillfunctionally active, producing both RNA and proteinproducts (McMillan & Singer 1993).Repetitive elements are also seen in amino acid se-quences. For example, immunoglobulins are composedof two copies of both heavy and light chains, whichthemselves share two basic sequence motifs. Multiplecopies of this immunoglobulin domain are present inmany cell surface receptors, cell adhesion molecules,and antibodies.The study of repeats is important for a variety ofreasons. The presence of repetitive elements makes se-quence assembly di�cult, since a unique ordering ofthe contigs may no longer exist. Polymorphic repeatsare also used as physical and genetic markers. In addi-tion, control and transcriptional elements are presentin multiple copies in the genome, and a study of the re-peats may aid in identifying them. Most importantly,repetitive elements may be used to infer the evolution-ary history of the genome. The distribution of theirprevalence and time of birth may pinpoint catastrophicevents in the evolution of the genome.The prevalence and diversity of repeats in thegenome leads to a number of biological questions. Howdid these repetitive elements arise? What functions dothey play? Are the repeat elements stable? To addressthese questions, tools are needed to recognize repeti-tive elements in anonymous sequence data, and to cat-egorize and analyze the resulting families of sequenceelements.Recognizing repetitive sequence elements in genomicsequence is an example of a fundamental problem inmachine learning, namely, pattern induction from ananonymous data stream. In the case of molecular se-quence analysis, no prior knowledge of the length, loca-tion, number, or characteristics of the repeats is avail-able. Therefore, general pattern induction methodsneed to be developed.Milosavljevic and Jurka (1993) have used minimumlength encodings to study signi�cant repeats in a se-quence, thus computing a short representation of a1



sequence from an information-theoretic perspective.Fitch, Smith, and Breslow (1986) have examined theproblem of detecting tandem repeats and analyzingtheir evolutionary history. A number of techniquesalso exist to identify exact repeats. A simple e�-cient algorithm utilizes su�x trees (Bieganski et al.1994). Heuristic algorithms, like BLAST (Altschul etal. 1990) and FASTA (Pearson & Lipman 1988), alsoperform well in detecting repeats with few mutations.However, none of these fast searching techniques per-form well for detecting short mutated repeats.Blaisdell et al. (1993) have systematically studiedsigni�cant repeats in an E. coli DNA sequence (length1.6 million bases). Both small repeats with high copynumber and larger repeats with smaller copy numberare considered signi�cant. They used an algorithmdeveloped by Leung et al. (1991) for identifying re-peats. This linear time algorithm relies on �ndingrepeats with non-mutated blocks possibly connectedby short mutated blocks. The sensitivity of this algo-rithm would appear to be similar to that of BLAST,and thus may not be adequate for discovering short,but signi�cant mutated repeats.We have adopted a sequence similarity scoring sys-tem based on a well-de�ned underlying statisticalmodel (Altschul 1991; States, Gish, & Altschul 1991).Using this approach, we have been able to de�ne sta-tistically signi�cant classes of repeated sequence el-ements. Furthermore, we have developed tools toanalyze and visualize these classes, which aid in un-derstanding the complicated relationships between theconstituent elements of these classes. In particular, ahierarchical view of class relationships is developed toexamine biological evolutionary relationships betweenelements.Over 3:6 million contiguous base pairs of sequencefrom C. elegans chromosome III have recently beendetermined.1 We have focused on this region for ouranalysis, since it includes one of the largest contiguoussegment of DNA sequence available (Wilson and others1994). Experimental studies with reassociation kinet-ics and electron microscopy have suggested that repeti-tive elements account for 17% of the C. elegans genome(Britten & Kohne 1968; Sulston & Brenner 1974;Wood 1988). Our computational analysis provides anestimate of approximately 12%. These repeat elementsare diverse, with multiple apparent mechanisms of ori-gin and evolution. MethodsWe use the term sequence segment to refer to a con-tiguous section of the DNA sequence. The term repeatsegment refers to a sequence of DNA (of signi�cant1This is almost a contiguous sequence, with 21 gapsranging in size from 30,000 to 483,000 bases with the totalgap size of approximately 2 million bases. Thus, these 3:66million sequenced bases span a sequence of approximately5:7 million bases.

length) that occurs more than once in the availablesequenced genome. The repeat segments include seg-ments both on the plus and minus strands of the DNA.The frequency of occurrence of a segment is referredto as its copy number. Thus, unique segments havecopy number one, and repetitive elements have a copynumber of at least two.Signi�cant scoreA repeat segment is considered signi�cant if it scoresabove a certain threshold. The threshold score is essen-tially log2N bits, where N is the search space (productof the lengths of query and the database sequence).For a self-similarity search of a sequence, N is approx-imately the square of the sequence length.The statistical theory of maximal local alignmentsis well developed, and we judge signi�cance accordingto Karlin and Altschul (1990).A score S (in bits) is considered signi�cant if:S � log2 Kp + log2NK depends upon the substitution matrix, and wasupper bounded by 0:4 for our choice of substitutionmatrices. p is the probability that the score S occursby chance alone. We consider an alignment signi�cantwhen p is 0:05. N is L2 + L(L � 1)=2, where L isthe total length of the examined sequence (3,655,029)for the C. elegans. A simple explanation for the valueof N is that we are searching the lower triangle ofthe dynamic programming matrix for the plus strandagainst the plus strand, and the entire matrix for theplus strand against the minus strand, and the totalnumber of starting points for possible alignments inthese matrices is L2 + L(L � 1)=2. Thus,S � log2 0:40:05 + log2(1:5L2 � 0:5L)� 3 + log2(2:0� 1013)� 47:2 bitsIn addition, since we use the best alignment scoreover all the PAM matrices (corresponding to an in-crease in search space), a correction of 12�0:693 ln lnNneeds to be applied (Altschul 1993). This amounts to2.5 bits, raising the cuto� to 49.7 bits. Therefore, weused 49.7 bits as the minimum score for a repeat to beconsidered signi�cant.However, for repeats with copy number greater thantwo, a smaller score may be considered signi�cant(Altschul & Lipman 1990). If two copies of a repeatwith a score of 50 bits are unlikely, then three copiesof a repeat with a score of 36 bits are also unlikely. Ingeneral, for copy number equal to three, N = 7L3=6,and a total score of 71.4 bits for the best two align-ments of the three is signi�cant2.2There are three search matrices to consider: all three2



PAM distanceThe uniform mutation model assumes that mutationsoccur with equal frequency over time and base posi-tion. The evolutionary distance between two sequencesegments can be estimated using this model (States,Gish, & Altschul 1991). This mutation model pro-vides a series of scoring matrices, each correspondingto an evolutionary distance. The evolutionary distancebetween two sequence segments is inferred from thenumber of the scoring matrix that maximized the in-formation content (score) of the alignment. The uni-form mutation model is an approximation, and thereare some regions of DNA sequence where it does nothold; however, due to its simplicity it is still widelyused.PAM is an abbreviation for point accepted muta-tion. The PAM 1 scoring matrix maximizes the scorefor sequences, where each base has su�ered an averageof 0:01 mutations. The PAM number can also be re-garded as a time unit. Thus, PAM 1 is the time takenfor a sequence to achieve one point accepted mutation.The various PAM matrices are built using a Markovmutation model. The diagonal probabilities for theone point accepted mutation probability matrix (M1)are 0:99, and a biased mutation model provides theprobability of transitions (A$G and C$T = 0:006),and of transversions (A$C, A$T, C$G, and G$T= 0:002). The probability matrix corresponding to nPAM's isMn = (M1)n. The element in the ith row andjth column of this matrix is Mnij. These probabilitymatrices are converted to symmetrical log odds scorematrices with scores Sij 's. The score for aligning basei with base j at n PAM's is Snij, andSnij + Snji = log2 piMnijpipj + log2 pjMnjipjpipi is the probability of occurrence of base i. For theC. elegans sequence (pA = pT = 0:32 and pC = pG =0:18). Since the scores should be symmetrical,Snij = Snji = 12 log2 MnijMnjipipjThus, we obtain a scoring matrix (with the scores inbits) for each PAM distance. Given a local alignment,one of the PAM matrices provides the best score forthe alignment.3 The number of this optimal matrix isinferred to be the evolutionary distance between thetwo segments (involved in the local alignment).segments on the positive strand (N = L3=6), one segmenton the positive strand and two on the negative strand (N =L3=2), and two segments on the positive strand and one onthe negative strand (N = L3=2). In summation, the totalsearch space is N = 7L3=6.3We use PAM matrices from 1 to 125. Though PAMmatrices with distance larger than 125 can be used, theyprovide little information, and our tests failed to �nd anysigni�cant alignments at greater than PAM 125.

Local Alignment AlgorithmThe problem of locating repeated segments is easily re-duced to the problem of searching a sequence databasefor similarity. A number of heuristic tools exist forthis purpose, including BLAST (Altschul et al. 1990),FASTA (Pearson & Lipman 1988) and FLASH (Cali-fano & Rigoutsos 1993). Altschul et al. (1994) providean excellent review of the issues involved in searchingsequence databases.BLAST We attempted to identify all local align-ments by using BLASTN version 1.3.12 with option�overlap and word size W = 8. Since BLASTN is notguaranteed to work correctly with W=8, we also usedW = 12, and merged the sets of alignments obtained.All the possible alignments indicated by BLAST werere-scored using the PAM matrices to establish a PAMdistance for each alignment.BLASTN is optimized to �nd nearly identical se-quence segments rapidly. Our results indicated thatit preferentially found alignments which had low PAMnumbers. This was due both to the default scoringmatrix it utilizes (+5 for a match, and �4 for a mis-match), and its requirement that at least W basesmatch exactly (where W is the word size). However,repeat segments with a high PAM distance may havea signi�cant score without having an exact match ofW bases.FLASH is e�cient for repeated searches on the samedatabase; however, we required only a single search(Califano & Rigoutsos 1993). The code for FLASHis not available, thus it is di�cult to use FLASH onthe C. elegans sequence. We are currently evaluatingthe sensitivity and e�ciency of FASTA for our repeatsearch.Exhaustive search The limitations of BLASTN ne-cessitated an exhaustive search for identifying all thelocal alignments. Since we were interested in only un-gapped alignments, this exhaustive search is a specialcase of the dynamic programming algorithm (Water-man 1989). It can be easily implemented using O(L)space. The problem is easily partitioned into sets ofdiagonals, which can be handled in parallel on di�er-ent workstations. The sequence (L) being 3.6 Mb long,the dynamic programming was a major undertaking ofO(L2) = (3:6 � 106)2 = 1:3 � 1013 operations, whichon a combination of 6 workstations (including SGIIndigo's, DEC Alpha 3000/500's, and SPARCstation10's) took 4 days to compute.We identi�ed all the local alignments by scanningalong each diagonal for the number of matches minusmismatches exceeding 10 (� 20 bits). We believe thisnumber (10) is small enough to detect all the signi�-cant alignments. The set of local alignments is post-processed to weed out the alignments with insigni�cantscores. The best PAM distance and end points foreach alignment are determined, and utilized as inputfor building the repeat graph.3



Encoding repeat alignments as graphsA graph G = (V;E) is de�ned to capture the variousrelationships between the repeat segments. The set ofvertices V is the set of repeat segments. The edges Erepresent alignments. The edges are weighted, and theedge weights correspond to the evolutionary distancebetween the sequence segments. There is no edge be-tween unrelated segments.Distinct families of repeats correspond to the con-nected components of this graph. In fact, the con-nected components that correspond to well-conservedrepeat families should have high connectivity ap-proaching that of cliques. The connected componentscan be identi�ed algorithmically in O(jEj) time. How-ever, the identi�cation of distinct vertices is somewhatarbitrary. The local alignment algorithm produces apairwise list of sequence segments (along with a scoreand distance for each such pair). If we consider allsuch sequence segments, we get disjoint, overlapping,and totally included segments. We need a method todetermine which overlapping sequence segments canbe represented by the same vertex. If we merge seg-ments into the same vertex generously, we may end upwith one large connected component, and the varioussequence segments involved will bear little similarity.We represent segments that have at least 90% over-lap by a single vertex4 (i.e. jA \ Bj=jA [ Bj > 0:9).Thus, most vertices in a connected component will beof similar length.Each connected component (C) corresponding to arepeat family is reduced to a minimum spanning tree(T ). The minimum spanning tree presents a succinctencoding of the evolutionary relationship between seg-ments (States, Harris, & Hunter 1993).Consider a single connected component. Weuse Kruskal's algorithm for building the minimumspanning tree (Corman, Leiserson, & Rivest 1990).Kruskal's algorithm sorts the edges by non-decreasingweight. It considers each edge in order and if the ver-tices on this edge are not already connected, it includesthis edge in the spanning tree. This has the advan-tage that the set of trees obtained after the edges withweight less than w have been considered correspond toall the evolutionary relationships in the family withinw PAM's. Each such tree (Tw) is reduced to a singlevertex, which represents a common ancestral sequencefor the vertices (sequence segments) in Tw.5In other words, we build this tree PAM level by PAMlevel. Consider �gure 1. The entire sequence is laidout along the x-axis (the ith base is at x = i). ThePAM distance is along the y-axis. Each set of vertices(sequence segments) that are connected by edges with4This choice is heuristically motivated, and di�erentoverlap criterion provide somewhat di�erent family struc-tures and total estimates of information duplication.5In fact, these spanning trees are a form of Steiner trees,as we are introducing additional vertices (corresponding toancestral sequences) into the graph.

weight PAM 1 in the spanning tree is joined by edgesto a common point (an additional vertex is introduced)at PAM 1, indicating that they evolved from a commonunknown ancestor within one PAM.6E�cient implementations (using Fibonacci heaps)of the minimum spanning tree have a complexity ofO(jEj+ jV j log jV j), and even simple implementationsprovide O(jEj log jEj) running time (Corman, Leiser-son, & Rivest 1990). Moreover, since our edge weightsare integral and bounded (by the minimum and max-imum PAM distance), we can use Binsort to sort theedges to achieve a simple O(jEj+ jV j log jV j) runningtime algorithm. The bottleneck, however, is not theminimumspanning tree implementation but the repeatdiscovering step. ResultsA salient point of our analysis was the number of repet-itive segments and the diversity of families discovered7.An assessment of the duplication reveals that the se-quence repeats account for approximately 12:3% of theregion of the C. elegans genome. Figure 2 exhibits theregions of sequence duplication along the analyzed seg-ment of chromosome III. The sequence is laid on thex-axis, and the number of the bases in each block of10 kilobases that participate in a signi�cant repeat areplotted on the y-axis. Most of the extensive regions ofthe chromosome that appear unique are unsequencedregions for which no data was available. The regions ofhigh duplication activity correspond to a combinationof large local repeats (the largest was almost 8 kb), tan-dem repeats and local inverted repeats. However, thevast majority of the repeats were scattered randomlyover the chromosome. In summary, about 450 kb ofthe 3,655 kb are involved in a duplication event, cor-responding to 12:3% of the analyzed sequence.Figure 3 plots the distribution of the sizes of thevarious repeat families. About half the families had acopy number of two, and a fourth of the families hada copy number of three. This suggests that many re-peat segments were missed because only a single copy(or two copies of a repeat that may only be three waysigni�cant) were present in the analyzed region of se-quence. The region of chromosome III analyzed rep-resents about 3.6% of the total C. elegans genome. Inaddition, one of the gaps in the sequence is known tobe composed almost entirely of repetitive elements. Asmore sequence data becomes available, the signi�cancelevel for a repeat will rise. Thus, some of the current6This visualization imposes an ultrametric on the evo-lutionary distances. If a segment A is related to two othersegments B and C by distance of PAM d, then B and Care assumed to be related by a distance of at most PAM d.Thus, each segment has only a single edge emanating fromit, forcing the evolutionary structure to be a tree ratherthan a graph.7Internal structure of tandem repeats was excluded fromthe analysis.4



(a)
(b)Figure 1: Spanning trees representing evolution. xrange is the entire contiguous sequence about 6 millionbases. (a) A small repeat family with 4 members.Two members are separated by PAM 1, and these areconnected to a newly introduced vertex at PAM 1. Thex location of the new node is chosen to be the weightedmidpoint of the sequence segments involved. A thirdmember is connected to the ancestor of the �rst twomembers at PAM 3, and the last member is connectedto the ancestor of the previous three family membersat PAM 7. (b) A larger repeat family with membersall over the chromosome.
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(a)
(b)Figure 7: Local evolutionary tree. The range of xis 2500 bases, and its o�set is 4.042Mb; thus, thisentire repeat family is present between 4,042,000 and4,044,500 bases (a) Only edges from the midpoints ofthe repeat segments are drawn. (b) The extent of thesequence involved in the duplication is shown. Noticea majority of the 2500 base segment is covered by 22repeat segments, each about 85 bases long.

within a section of 2,500 bases. Such repeat familiescan be accounted by a local di�usion phenomena. Fig-ure 1 exhibits two other representative repeat families.These have members spread over the entire 6 Mb re-gion, and these cannot be accounted by a model oflocal rearrangement.DiscussionThe distribution of family size as a function of familynumber exhibits exponential characteristics. 75% ofthe total families (7629) had only a single or a doubleduplication event (copy number two or three) in theanalyzed region of chromosome III (�gure 3). If weextrapolate this distribution to the entire genome, itis likely that we will discover more members of thesefamilies and other new families. The 3.66 Mb that wehave examined is only a third of the length of chromo-some III, and only a thirtieth of the C. elegans genome.We expect to discover greater than 12% repeats, whenthe entire genomic sequence becomes available and isexamined.The number of true families of repeats is probablysmaller than the number we discovered (7629). Ac-counting for insertion and deletion mutations will re-duce the number of families. Manual examination andannotation of the families will also correct errors dueto the heuristic utilized to form families.A linear correlation was observed between the evolu-tionary divergence of the family members and the cu-mulative number of repeat families (�gure 5). The sen-sitivity of our similarity search breaks down at approx-imately 40 PAMs. For non-coding genomic sequence,40 PAMs corresponds to a relatively short time period(about 4�40 million years). For example, C. briggsaeand C. elegans are thought to have diverged approxi-mately 30 million years ago, but share no recognizablesequence similarity in homologous non-coding regionsof the genome (Emmons, Klass, & Hirsh 1979). There-fore, most of the non-coding duplication events that wehave observed are likely to have occurred in the last 30to 40 million years. Events leading to the introductionof repeat families with size 30 or more per genome mustoccur every few thousand years, and events leading tofamilies with small sizes may be quite frequent.Duplication events occurring in the last 30 to 40 mil-lion years account for about 12% of the information inthe analyzed segment of chromosome III. Extrapolat-ing the amount of repetitive sequence in the genomeback in evolutionary time, duplication events occur-ring after the radiation of the major animal phylaabout 600 million years ago could account for muchof the information present in the C. elegans genome.Obviously, protein coding regions are being ignored inthis analysis. Nevertheless, our results suggest thatthe majority of the non-coding sequence in the C. el-egans genome is derived from duplication events thathave occurred since the higher animals diverged fromeach other. However, most of the evolution events that7



have occurred more than 40 million years ago cannotbe identi�ed.The fact that genome sizes of phylogenetically re-lated species are similar suggests that the overallgenome sizes have been relatively stable, although thepossibility of an uniform growth in genome size amongall contemporary members of the phyla cannot be ex-cluded. To maintain a stable genome size in the faceof a constant rate of introduction of new sequence,sequence loss must be occurring at a comparable rate.Our analysis techniques di�er from those employedby Blaisdell et al. (1993). We employ a more rigor-ous, but computationally expensive search technique.We use standardized signi�cance tests employing abit-scoring criterion rather than a number of basesmatching-mismatching criterion. The focus of ourwork is on estimating the total repeat content andevaluating the evolutionary implications; while Blais-dell et al. annotated the repeat families they obtained.A limitation of the current analysis is our inabilityto consider repeats that have undergone insertion ordeletion mutations (indels). Repeats with indels causeproblems in three of the constituents of our toolkit:judging signi�cance, computing evolutionary distance,and locating the repeats. The statistical theory pro-vided by Karlin and Altschul (1990) does not extendto gapped alignments. It is also more di�cult to judgeevolutionary distances between repeats that have suf-fered indels. There are also reasons of computationale�ciency. Unfortunately, our tests with computation-ally e�cient search tools such as BLASTN have showedthat they missed at least some distantly related se-quence duplications. We have therefore used a fullsequence comparison with a tightly coded inner loop,yet, the analysis of chromosome III required severaldays of compute time on a farm of workstations oper-ating in parallel. Using a linear space implementationof the dynamic programmingalgorithmwould allow forthe presence of insertions and deletions, but the innerloop is more complex, and the overall calculation wouldbe more time consuming (Waterman & Eggert 1987;Myers & Miller 1988). We are also examining paral-lel computing solutions for the search problem. Weexpect that the use of more sophisticated search tech-niques will improve the sensitivity of our similaritysearch, but we do not expect it to alter our resultsqualitatively.Acknowledgments We would like to thank HughChou, D'vorah Graeser, Toni Kazic, Laureen Treacyand the members of the C. elegans sequencing cen-ter at Washington University for their suggestions andcomments. ReferencesAltschul, S., and Lipman, D. 1990. Protein databasesearches for multiple alignments. Proc. Natl. Acad.Sci. USA 87:5509�13.
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